Document
A coupled physical-biological-chemical model for the Indian Ocean.
Identifier
DOI: 10.1007/BF02708337
Source
Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences. v. 109, 4, p. 503-537
Contributors
Sharada, M. K., Author
Yajnik, K. S., Author
Country
India
City
Karnataka
Publisher
Indian Academy of Sciences.
Gregorian
2000-12-01
Language
English
English abstract
A coupled physical-biological-chemical model has been developed at C-MMAOS for studying the time-variation of primary productivity and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2 (MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide (pCO2) of the surface layer is obtained from the chemical equilibrium equations of Peng et al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2/day during SW monsoon near the Somali Coast on account of strong winds.
ISSN
0253-4126
Category
Journal articles