Document
NAS-Based CNN design for histopathology image classification using NAS Bench-101.
Publisher
Sultan Qaboos University.
Gregorian
2021
Language
English
English abstract
Cancer is one of the top leading causes of death worldwide and the most common type
of cancer amongst women is breast cancer. Breast cancer treatment can be highly
effective if the cases are detected and diagnosed early, and the best way to detect the
presence of breast cancer with certainty is by conducting a biopsy. The tissue
specimens examined for diagnosis are captured with different magnifications, as the
most informative magnification is still undecided amongst pathologists. Automating
breast cancer detection through Computer-Aided Diagnosis (CAD) is a very crucial
task, given the importance of early detection for proper treatment and the workload
shortage of pathologists meant to carry out the task manually. Amongst the different
CAD methods that have been proposed, Convolutional Neural Networks (CNN)
achieved great success in histopathology image analysis as of late. Unfortunately,
handcrafting a CNN architecture that suits a specific dataset is a specialized trial-and error task that is tedious and time-consuming. An alternative to manually designing a
CNN is Neural Architecture Search (NAS) methods, which automatically design
optimized CNN-based solutions. However, NAS methods tend to require a lot of time
and/or powerful computing resources. The NAS-Bench-101 dataset was recently
created to make NAS methods more accessible to researchers for benchmarking and
experimenting with different NAS methods.
In this work, we propose to classify breast cancer histopathology images independently
of their magnification with a CNN designed automatically with the use of NAS-Bench 101 and the NAS search algorithm Regularized Evolution. We have proposed two
architectures, a single-task network that predicts malignancy and a muli-task network
that predicts both malignancy and magnification. The networks were evaluated on the
BreakHis dataset, and the results are comparable to previous state-of-the-art methods
that are magnification-specific and surpass previous magnification-independent
approaches.
Member of
Resource URL
Arabic abstract
يعد السرطان أحد أهم أسباب الوفاة في جميع أنحاء العالم، وأكثر أنواع السرطانان شيوعا بين النساء سرطان الثدي ي. يمكن أن يكون علاج سرطان الثدي فعالاً للغاية إذا تم الكشف عن الحالات وتشخيصها مبكرًا ، وأفضل طريقة للكشف عن وجود سرطان الثدي بشكل مؤكد يتم عن طريق أخذ خزعة. الأنسجة يتم التقاط عينات الأنسجة التي تم فحصها من أجل التشخيص بتكبيرات مختلفة ، حيث لا يزال التكبير الأكثر إفادة
لم يتم تحديده بين إخصائيي علم الأمراض. تعد أتمتة اكتشاف سرطان الثدي من خلال التشخيص بمساعدة الكمبيوتر (CAD) أمرًا بالغ الأهمية.
، نظرًا لأهمية الاكتشاف المبكر للعلاج المناسب ونقص في اختصاصيي علم الأمراض للقيام بالمهمة يدويًا.
لم يتم تحديده بين إخصائيي علم الأمراض. تعد أتمتة اكتشاف سرطان الثدي من خلال التشخيص بمساعدة الكمبيوتر (CAD) أمرًا بالغ الأهمية.
، نظرًا لأهمية الاكتشاف المبكر للعلاج المناسب ونقص في اختصاصيي علم الأمراض للقيام بالمهمة يدويًا.
Category
Theses and Dissertations