وثيقة

Artificial intelligent techniques for palm date varieties classification.

المعرف
DOI: 10.14569/IJACSA.2020.0110958
المصدر
International Journal of Advanced Computer Science and Applications. v. 11, 9, p. 489-495
المساهمون
الدولة
United States.
الناشر
Science and Information Organization.
ميلادي
2020-01-01
اللغة
الأنجليزية
الملخص الإنجليزي
The demand on high quality palm dates is increasing due to its energy value and nutrient content, which are of great importance in human diet. To meet consumer and market standards with large-scale production, in Oman as among the top date producer, an inline classification system is of great importance. This paper addresses the potentiality of using Machine-Learning (ML) techniques in classifying automatically, without any physical measurement, the six most popular date fruit varieties in Oman. The effect of color, shape, size, and texture features and the critical parameters of the classifiers on the classification efficiency has been endeavored. Three different ML techniques have been used for automatic classification and qualitative comparison: (i) Artificial Neural Networks (ANN), (ii) Support Vector Machine (SVM), and (iii) K-Nearest Neighbor (KNN). Based on the merge of color, shape and size features contributes to achieve the highest accuracy. Experimental results show that the ANN classifier outperforms both SVM and KNN with the highest classification accuracy of 99.2%. This developed vision system in this paper can be successfully integrated in the packaging date factories.
ISSN
2158-107X
قالب العنصر
مقالات الدوريات

مواد أخرى لنفس الموضوع

الرسائل والأطروحات الجامعية
3
0
Al-Nabhaniyah, Iman Nabhan Suleiman.
Sultan Qaboos University
2024
الرسائل والأطروحات الجامعية
9
0
Al-Alawi, Ibrahim Khamis Said.
Sultan Qaboos University.
2024
الرسائل والأطروحات الجامعية
3
0
Abdullah, Nawaf.
Sultan Qaboos University
2024
الرسائل والأطروحات الجامعية
3
0
Al-Aghbriyah, Azza.
Sultan Qaboos University
2024
مقالات الدوريات
3
0
Al-Shidi, Rashid H.
MDPI AG.
2019-03-01
الرسائل والأطروحات الجامعية
5
0
Al-Naabiyah, Fatma Mohammed Hamdan.
Sultan Qaboos University
2024