وثيقة

Commutative semigroups whose endomorphisms are power functions.

المعرف
DOI: 10.1007/s00233-021-10178-x
المصدر
Semigroup Forum. v. 102, 3, p. 737-755
الدولة
Germany.
مكان النشر
Berlin
الناشر
Springer.
ميلادي
2021-06-01
اللغة
الأنجليزية
الملخص الإنجليزي
For any commutative semigroup S and positive integer m the power function f: S→ S defined by f(x) = xm is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.
ISSN
0037-1912
قالب العنصر
مقالات الدوريات

مواد أخرى لنفس المؤلف

مقالات الدوريات
0
0
Mazurek, Ryszard.
Springer.
2011-10
مقالات الدوريات
0
0
Mazurek, Ryszard.
Elsevier.
2014-02

مواد أخرى لنفس الموضوع

مقالات الدوريات
5
0
Pinto, G. A.
College of Science, Sultan Qaboos University.
2019-01-19
مقالات الدوريات
3
0
Pinto, G. A.
College of Science, Sultan Qaboos University.
2021-01-24
مقالات الدوريات
0
0
Mazurek, Ryszard.
Springer.
2011-10
مقالات الدوريات
0
0
Mazurek, Ryszard.
Elsevier.
2014-02