وثيقة
On semigroups admitting ring structure.
المعرف
DOI: 10.1007/s00233-011-9316-8
الناشر
Springer.
ميلادي
2011-10
اللغة
الأنجليزية
الموضوع
الملخص الإنجليزي
A right-chain semigroup is a semigroup whose right ideals are totally ordered by set inclusion. The main result of this paper says that if S is a right-chain semigroup admitting a ring structure, then either S is a null semigroup with two elements or sS=S for some s∈S. Using this we give an elementary proof of Oman's characterization of semigroups admitting a ring structure whose subsemigroups (containing zero) form a chain. We also apply this result, along with two other results proved in this paper, to show that no nontrivial multiplicative bounded interval semigroup on the real line ℝ admits a ring structure, obtaining the main results of Kemprasit et al. (ScienceAsia 36: 85-88, 2010).
المجموعة
ISSN
0037-1912
URL المصدر
قالب العنصر
مقالات الدوريات