وثيقة
Optical solitons in different wave guides governed by nonlinear Schrodinger type equations.
الناشر
Sultan Qaboos University.
ميلادي
2023
اللغة
الأنجليزية
الملخص الإنجليزي
In this thesis, we investigate exact analytical solutions of nonlinear Schrodinger
type equations which govern the propagation of soliton pulses through optical fi bres. The equations under consideration are generalised nonlinear Schrodinger
equation of third order, perturbed Gerdjikov-Ivanov equation and the Lakshmana Porsezian-Daniel model equation. The methods employed for the solution are
auxiliary equation method, improved projective Riccati equation method and
Bernoulli sub-ODE method. We have derived a variety of solutions in terms of
Jacobi elliptic functions (JEFs) and their infinite period counterparts when the
modulus of the JEFs approaches 1. The solutions obtained are dark, bright, sin gular, W-shaped solitons, etc. The constraint conditions for the solutions to exist
have also been found. The physical interpretations of the obtained results are
represented by depicting the plots of some selected solutions. The modulation
instabilities of the GI equation and the LPD model have also been investigated.
المجموعة
URL المصدر
الملخص العربي
في هذا المشروع نسعى إلى إيجاد الحلول التحليلية لمعادلات من نوع شرودنجرغير الخطية التي تصف انتقال نبضات السو ليتون عبر الألياف البصرية. المعادلات تم دراستها هي المعادلة العامة لشرودنجر غيرالخطية العامة من الرتبة الثالثة ومعادلة جيردجيكوف ايفانوف المضطربة ومعادلة نموذج لاكشمانا -بورسيزيان -دانيال تم استخدام عدة طرق لايجاد حلول هذه المعادلات.
قالب العنصر
الرسائل والأطروحات الجامعية