وثيقة

Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region.

المعرف
DOI: 10.2166/hydro.2016.086
مؤلف
المساهمون
Jain, Ashu., مؤلف
الناشر
IWA Publishing.
ميلادي
2016-07
اللغة
الأنجليزية
الملخص الإنجليزي
A surrogate modeling framework is developed in this study to circumvent the computational burden of high-fidelity numerical groundwater models for arid coastal aquifers. Two different surrogate models, namely, artificial neural network (ANN) and Gaussian process model (GPM) are trained to replace the computationally expensive numerical flow and transport model OpenGeoSys. A novel time-dependent training scheme is introduced which helps the surrogates in tracking the discrete-time state-space trajectories of the high-fidelity model, thereby making them suitable for variable-time simulations. The surrogates are also tested in the extrapolation range corresponding to some extreme boundary conditions such as a very high rate of extraction. Both the surrogates show comparable accuracy in efficiently approximating the numerical model response; however, ANN is found to be much faster than GPM for the size of the data used. The trained surrogates are then used in developing a long-term planning and management framework for analyzing feasible management scenarios in the coastal aquifer of Oman.
ISSN
1464-7141
قالب العنصر
مقالات الدوريات

مواد أخرى لنفس الموضوع

الرسائل والأطروحات الجامعية
2
0
Farah, Inas Shadoul Mohamed.
Sultan Qaboos University
2024
الرسائل والأطروحات الجامعية
0
0
Al-Raisiyah, Amani Jasim Mohammed.
Sultan Qaboos University.
2019
الرسائل والأطروحات الجامعية
0
0
Al-Yaroubi, Saif Mohanna Sulaiman
Sultan Qaboos University
2013
الرسائل والأطروحات الجامعية
0
0
Aftab, Muhammad Saleheen.
Sultan Qaboos University
2015
الرسائل والأطروحات الجامعية
0
0
, .Nasr Nasser AbdullahAl-Qassabi
Sultan Qaboos University
2013